分布式一致

2018/09/20

分布式一致

CAP 与 BASE 理论

  • 《从分布式一致性谈到CAP理论、BASE理论》
    • 一致性分类:强一致(立即一致);弱一致(可在单位时间内实现一致,比如秒级);最终一致(弱一致的一种,一定时间内最终一致)
    • CAP:一致性、可用性、分区容错性(网络故障引起)
    • BASE:Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)
    • BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。

分布式锁

  • 《分布式锁的几种实现方式》
    • 基于数据库的分布式锁:优点:操作简单、容易理解。缺点:存在单点问题、数据库性能够开销较大、不可重入;
    • 基于缓存的分布式锁:优点:非阻塞、性能好。缺点:操作不好容易造成锁无法释放的情况。
    • Zookeeper 分布式锁:通过有序临时节点实现锁机制,自己对应的节点需要最小,则被认为是获得了锁。优点:集群可以透明解决单点问题,避免锁不被释放问题,同时锁可以重入。缺点:性能不如缓存方式,吞吐量会随着zk集群规模变大而下降。
  • 《基于Zookeeper的分布式锁》
    • 清楚的原理描述
  • 《jedisLock—redis分布式锁实现》
    • 基于 setnx(set if ont exists),有则返回false,否则返回true。并支持过期时间。
  • 《Memcached 和 Redis 分布式锁方案》
    • 利用 memcached 的 add(有别于set)操作,当key存在时,返回false。

分布式一致性算法

PAXOS

幂等

  • 《分布式系统—幂等性设计》
    • 幂等特性的作用:该资源具备幂等性,请求方无需担心重复调用会产生错误。
    • 常见保证幂等的手段:MVCC(类似于乐观锁)、去重表(唯一索引)、悲观锁、一次性token、序列号方式。

分布式一致方案

分布式 Leader 节点选举

TCC(Try/Confirm/Cancel) 柔性事务

  • 《传统事务与柔性事务》
    • 基于BASE理论:基本可用、柔性状态、最终一致。
    • 解决方案:记录日志+补偿(正向补充或者回滚)、消息重试(要求程序要幂等);“无锁设计”、采用乐观锁机制。

分布式文件系统

唯一ID 生成

全局唯一ID

  • 《高并发分布式系统中生成全局唯一Id汇总》
    • Twitter 方案(Snowflake 算法):41位时间戳+10位机器标识(比如IP,服务器名称等)+12位序列号(本地计数器)
    • Flicker 方案:MySQL自增ID + “REPLACE INTO XXX:SELECT LAST_INSERT_ID();”
    • UUID:缺点,无序,字符串过长,占用空间,影响检索性能。
    • MongoDB 方案:利用 ObjectId。缺点:不能自增。
  • 《TDDL 在分布式下的SEQUENCE原理》
    • 在数据库中创建 sequence 表,用于记录,当前已被占用的id最大值。
    • 每台客户端主机取一个id区间(比如 1000~2000)缓存在本地,并更新 sequence 表中的id最大值记录。
    • 客户端主机之间取不同的id区间,用完再取,使用乐观锁机制控制并发。

一致性Hash算法